CT Imaging in Pediatric Trauma?

Jeff Bishop, FRCP (Ped), FRCP (PEM)

Objectives

- Review literature regarding indications for CT imaging in pediatric trauma
- Review some common patterns of injury in major pediatric trauma

Conventional (ATLS) Imaging

- AP CXR
- AP Pelvic X-ray
- Lat. C-Spine X-ray
- +/- FAST
- Selected CT scans
- Additional X-rays

Objectives of CT Imaging in Trauma

- Identify and aid in treatment or prevention of serious injuries
- NOT a treatment modality
- To be used only if potentially aids/does not block access to definitive care

Questions?

- What criteria is used to select CT scans to be done?
- How do I identify the patient who needs to be transported for CT imaging?

Disclosures

- I have no conflicts to disclose
Cases to be discussed here

Why discuss this at all?
- Rate of missed injuries in pediatrics likely similar to adults (9-26%)
- Skeletal injuries predominate
- Rate increases with complexity of trauma, altered LOC and possibly decreasing age
- Goal is to quickly identify injuries that change outcomes/require intervention

Why discuss this at all?
- Possible evidence suggesting that whole body CT Scan (PAN SCAN) is better than other modalities INCLUDING physical exam for identifying injuries

PanScan may be better...or at least faster
- No mortality difference.
- Faster time to movement out of the ED

PanScan?
 - Multicentre European and North American, adult study of conventional approach (plain x-rays and targeted CT scans) vs whole body scan in adult major trauma patients
 - Completion date March 2014

SCAN ‘EM ALL!
- For a 3 year old girl, 1 in 166 mean lifetime cancer risk for a whole body CT scan
- 1 in 333 for a 3 year old boy
- 1 in 250 for a 15 year old girl and 1 in 500 for a boy
- 1 in 1500 for an adult

Please, can’t I just do a little scanning?

- For a 1-year-old child, estimated lifetime cancer mortality risk to be 0.18% for an abdominal CT and 0.07% for a head CT

So Who Should I Scan?

Head Imaging!!

Kupperman et al. Lancet Sept 2009

Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study

Osmond et al. CMAJ March 2010

PECARN STUDY - Lancet 2009

Age Less Than 2 Years:

CT YES (4.4% risk of cTBI)
- GCS 14
- Altered LOC
- Palpable skull fracture

CT MAYBE (0.9% risk of cTBI)
- Occipital, temporal or parietal hematoma
- LOC greater than 5 seconds
- Not acting normal as per parent
- Severe mechanism of injury

NPV and Sensitivity of 100%
PECARN STUDY - Lancet 2009

- Age greater than 2 years
- CT YES (4.3% risk of ciTBI)
 - GCS 14
 - Altered LOC
 - Signs of basilar skull fracture
- CT Maybe (0.9% risk of ciTBI)
 - History of LOC
 - History of vomiting
 - Severe mechanism
 - Severe headache
- NPV and Sensitivity of 99.95% and 96.8%

PECARN STUDY - Lancet 2009

- Based recommendation of scan yes or no on whether risk of ciTBI was higher than risk of CT induced malignancy
- Still recommends yes or possible scan for 50% of kids with head injury

CATCH Study - CMAJ 2010

- Multicentre cohort study of 3866 patients
- 4.1% rate of TBI on CT scan
- 0.6% rate of neurosurgical intervention
- Defined criteria for who DOES need a CT scan
 - High risk and Medium risk criteria

CATCH Study - CMAJ 2010

- High Risk:
 - GCS <15 2 hours or more post injury
 - Suspected open or depressed fracture
 - Worsening headache
 - Irritability on exam
- Medium Risk:
 - Any sign of basal skull II
 - Large boggy hematoma
 - Dangerous mechanism
 - (MVA, fall >3feet, 5 stairs, fall off bicycle no helmet)

CATCH Study - CMAJ 2010

- Would scan 30% of kids due to high risk criteria
- Would scan 50% of kids due to medium risk criteria
- Sensitivity good (98-100%)
- Specificity moderate (50-70%)

Head Injuries Summary

- ciTBI rare in kids (less than 5%)
- Need for neurosurgical intervention less than 1%
- 2 guidelines for who needs/doesn’t need a head CT
- Lots of room still for clinical judgement
TAC C-Spine Guidelines

- Poll of all Canadian Pediatric Hospitals:
 - Responders (12/15)
 - Halifax, Montreal Children’s, Ottawa, Toronto, St. John’s, London, Winnipeg, Saskatchewan, Edmonton, Calgary, Victoria
 - 8 out of 12 use C-Spine Clearance algorithm
 - None are the same

Canadian C-Spine Rules

High risk factors that require imaging:
- Age ≥ 65 yo
- Dangerous mechanism of injury
 - Fall from 1m (5 stairs)
 - Axial load to the head (e.g. Diving)
 - MVA - high speed (>100mph, rollover, ejection)
 - Motorised recreational vehicles
 - Paraesthesia in extremities

Low risk factors that allow safe assessment of range of motion:
- Sitting position in the emergency department
- Simple rear end MVA
- Ambulatory at any one time
- Delayed onset of neck pain
- Absence of midline C-spine tenderness

TAC Guidelines (Clinical)

- National X-Radiography Utilization Study (NEXUS):
 - No posterior midline cervical tenderness
 - No evidence of intoxication
 - Normal LOC
 - No focal neurological deficit
 - No painful, distracting injury

TAC Guidelines Key Points

- Use Nexus +/- CCS for clinical clearance
 - Consider mechanism and look for pain free movement
 - Use caution in kids under 2 years
- Use AP and Lateral films
- Odontoid view in older kids (5 years and above)
TAC Guidelines Key Points

- No evidence yet to proceed to CT for everyone
- For kids less than age 8 years, consider CT neck C1-C3 if head CT
- Flexion/Extension views of unclear benefit
- If neuro findings, obtain MRI
- If no reliable clinical exam for >24 hours consider CT/MRI

CHEST IMAGING

Ju Jo, Y. et al (2011) Aortic Dissection and Rupture in a Child
Korean Circ J. 2011 March; 41(3): 156–159

ATLS

- Life threatening chest injuries
 - Airway obstruction
 - Tension/massive hemothorax
 - Tension pneumothorax
 - Flail chest with pulmonary contusion
 - Open pneumothorax
 - Cardiac tamponade

 (Hopefully, diagnosis not made in CT…..)

ATLS

- Potentially life threatening injuries
 - Thoracic aortic disruption
 - Tracheobronchial injury
 - Blunt myocardial injury
 - Diaphragm disruption
 - Esophageal injury
 - Pulmonary contusion

 (Varying efficacy for CT in diagnosis)

Chest – Blunt Vascular Injuries

- Truncal vascular injuries are rare in children
 (<0.5% of trauma patients)
- High overall mortality (30-50%)
 - Especially with hemodynamic instability (75-100%)
- Associated with high rate of other injuries, MVC’s and high ISS score (25+)
- Chance # associated with abdominal Ao injury

Chest - Traumatic Diaphragm Rupture

- TDR rare in children
 - Large study of 20 500 patients showed rate of <0.07%
- Associated with high ISS (30+)
- Reports of missed injuries identified years later
- Can be missed on CT scan

Pediatr Surg Int 15:601–604

Chest Summary

- Pulmonary contusion in children rarely requires intubation or intervention
- Major vessel disruption/diaphragm rare and associated with extensive trauma
- CXR should be used as a screening tool for chest injuries, not CT

Abdominal Imaging

2012 CAR Level B evidence for contrast CT of the abdomen in “pediatric blunt trauma patients with high risk mechanism or clinical examination consistent with visceral injury.”

Lack of guidelines for imaging in pediatrics

- FAST alone as a screening tool shows sensitivity of approx. 50%
- Liver>spleen>kidney
- Uncommon:
 - Bowel
 - Pancreas
 - Bladder

Abdomen - Children

- Decision rule for low risk of IAI:
 - Low age-adjusted SBP
 - Abdominal tenderness
 - Femur fracture
 - Increased liver enzyme levels
 - Microscopic hematuria
 - Initial hematocrit less than 30%

- Sensitivity 94.9%
- Specificity 37.1%

Abdomen - Children

- Select pediatric patient populations have a high rate of intra abdominal injuries
 - Intubated patients (27%)
 - Severely head injured patients (23%)
 - High ISS
 - Mechanism
 - MVC
 - Falls
 - Handlebars
 - Associated injuries
 - Femur #
 - Pelvic #

Abdomen

- Traditionally, CT suggested for all microscopic hematuria in children
- Application of more conservative adult guidelines may be appropriate

Pelvic Imaging

- Pelvic x-ray has a low sensitivity for fracture identification (49-54%)
- Low incidence in pediatric trauma
 - 2.4-7.5% of trauma admissions
- Mortality of 2-12%

EAST

- If fractures are identified, CT should be done to examine for arterial contrast extravasation (if patient is stable) (Level 1)
- Hemodynamically unstable patients should be considered for angiography once non-pelvic sources of bleeding ruled out (Level 1)
- Fracture pattern does not predict arterial bleeding/need for angiography (Level 2)

Pelvic Imaging

- Small, single centre, retrospective studies have been done to identify patients at low risk of pelvic fracture
- Currently, ATLS guidelines as standard

Pelvic Imaging

- EAST
- T and L Spine Imaging

- Minimal literature to guide imaging in pediatrics
- Most guidelines extrapolated from adults
 - Mechanism and exam findings
- Multiple levels of fracture not uncommon
- Pediatric patterns of injury
 - Eg Chance #
 - NAI

And the answer is……..?

• Not yet clear.

• Use of pediatric modulation of scans and ALARA protocols required
 (as low as reasonably achievable)

• Children are not little adults in trauma
 • Adults break, children bounce
 • More pediatric research needed to help guide clinicians

Revisit cases and discussion

THANK YOU